

Value Components

	Pittsburgii	пантынив	Scranton	Pilliaueipilla	Jamesburg	Newark	Atlantic City	
Energy								
Fuel Cost Savings	\$41	\$41	\$41	\$38	\$42	\$39	\$41	
O&M Cost Savings	\$20	\$20	\$20	\$18	\$21	\$19	\$20	
Total Energy Value	\$61	\$60	\$60	\$56	\$63	\$58	\$61	
Strategic								
Security Enhancement Value	\$23	\$23	\$23	\$22	\$23	\$22	\$22	
Long Term Societal Value	\$28	\$29	\$29	\$27	\$28	\$28	\$28	
Total Strategic Value	\$51	\$52	\$52	\$49	\$51	\$50	\$50	
Other								
Fuel Price Hedge Value	\$31	\$42	\$42	\$47	\$24	\$44	\$25	0
Generation Capacity Value	\$22	\$16	\$17	\$22	\$19	\$26	\$18	6
T&D Capacity Value	\$6	\$1	\$1	\$3	\$1	\$8	\$2	
Market Price Reduction Value	\$35	\$67	\$69	\$54	\$52	\$51	\$54	
Environmental Value	\$54	\$55	\$55	\$52	\$23	\$22	\$23	4
Economic Development Value	\$44	\$45	\$45	\$42	\$45	\$44	\$45	
(Solar Penetration Cost)	(\$23)	(\$23)	(\$23)	(\$22)	(\$23)	(\$22)	(\$22)	
Total Other Value	\$170	\$203	\$206	\$199	\$143	\$173	\$144	
							2	
Total Value	\$282	\$315	\$318	\$304	\$257	\$280	\$256	

#	Value Component	Recommended Basis
1	Avoided Fuel Cost	Natural gas price projections
2	Avoided Variable Plant O&M Cost	MISO energy market costs: variable O&M portion

- * Include avoided marginal energy line losses
- Avoided fuel cost based on natural gas projections
- Couple with a CT/CC assumption
 - Preferable to black box production modeling
- Consider tying avoided capacity costs to same CT/CC assumption
- MISO O&M works, but split by fixed & variable if possible

#	Value Component	Recommended Basis
8	Fuel Price Guarantee	Differential required to achieve 25 year flat NG price

- A guarantee goes well beyond a hedge
- Puts natural gas prices on same footing with solar fuel pricing
- Several ways to develop the guaranteed gas cost level
 - Formulaic
 - Utility-derived
- Risk must be on the utility to put guarantee into practice
- Year by year Δs with gas price projections; or simply use guaranteed NG price in total

#	Value Component	Recommended Basis
5	Avoided Transmission Capacity Cost	MISO OASIS transmission prices

- MISO transmission rates are posted on OASIS.
- Wholesale customers pay utility (NSP, MP, etc.) \$/KW based on peak use.
- PV production reduces peak demand for transmission based on production at time of peak, i.e. capacity value.
- Savings based on average rate paid, rather than incremental transmission build.

```
Solar KW capacity on peak (KW ac) 1 KW x 50% (on peak) 

x Annual Transmission Service rate (\$/KW) $45.64 per kW-yr 

= \$/Solar KW $22.82/solar kW-yr
```

#	Value Component	Recommended Basis
3	Avoided Generation Capacity Cost	Capacity value x generation capital cost
3a	Avoided Fixed Plant O&M Cost	MISO energy market costs: fixed O&M portion
4	Avoided Reserve Capacity Cost	Reserve margin criteria x generation capital cost
6	Avoided Distribution Capacity Cost	Distribution capital cost x local capacity value
10	Credit for High Value Distribution Locations	

Joe Wiedman

#	Value Component	Recommended Basis
7	Avoided Environmental Cost	Component by component

Environmental value attributes should include:

-	<u>Updated</u> real costs of fossil fuels - based on National Research Council data
	☐ MN Statute 216B.2422, Subd. 3
	□ NO ₂ , SOx, PM _{2.5} – Resource: "Health & Environmental Cost of Electricity
	Generation in Minnesota." Sept. 2013

- Carbon

- Federal Interagency Working Group Social Cost of Carbon
 - Recommended by MN Pollution Control Agency in Xcel baseload diversification study of Sherco coal-fired power plant.
- Updated cost of carbon regulation compliance.
 - Oct. 2012 Synapse Energy Economics study
- Avoided costs from other conventional resource generation
- Regarding RECs. Poor proxy for environmental value received from distributed solar. However, customers should receive compensation for RECs.

#	Value Component	Recommended Basis
9	Credit for local manufacturing and	Local tax revenue tied to net solar
	assembly	jobs

- Minnesota economic benefits should be included because known and measurable
- Benefits largely societal, but utility benefit from increased economic activity in MN
- Methodologies
 - CPR: Local tax revenue tied to net solar jobs
 - San Antonio study a good methodology with conservative estimate

#	Value Component	Recommended Basis
11	Voltage Control	Placeholder for all ancillary services to be provided by advanced inverters

- The solar technology is available
 - "PV with advanced inverter can inject/consume VARs, adjusting to control voltage". (September 17, 2013 RMI presentation, at 76.)
- Utilities recognize this potential value
 - Distributed PV with storage, advanced inverters "may provide valuable grid support in the future" (Minnesota Power, supplemental comments)
- Utility may have to update its interconnection standards (e.g., to qualify for VOST)
 - Currently, PV inverters set to trip off due to voltage excursion
- Methodology
 - Displaced voltage control, etc. costs

#	Value Component	Recommended Basis
12	Market Price Reduction	Wholesale power price reductions due to demand reductions

MARKET PRICE VS. LOAD

Source: September 17, 2013 RMI presentation, at 76.

#	Value Component	Recommended Basis
12	Market Price Reduction	Wholesale power price reductions due to demand reductions

- Price reduction applies to all wholesale energy purchases
 - Benefits accrue to utilities, ratepayers in general
- "[M]arket price suppression [may] exceed the direct cost savings when load is high." CPR (NJ/PA) 2012 at 36.
- Methodology
 - Calculate gross DRIPE (demand-reduction induced price effects)
 based on (1) existing load, (2) DPV-caused load reduction, and
 (3) wholesale price elasticity.
 - Potential load adjustment factor
 - Potential second-order effects

#	Value Component	Recommended Basis
13	Disaster Recovery	Cost to restore local economy

- The potential value solar PV can provide to ratepayers (and society) when circuits go down
 - or when circuits would have gone down but for DPV (acts as a load modulator during high peak demand)
 - aka "Security Enhancement Value"
- The solar technology is available
- Utility may have to update its interconnection standards (e.g., to qualify for VOST).

#	Value Component	Recommended Basis
13	Disaster Recovery	Cost to restore local economy

Methodology

- CPR (NJ/PA) 2012: top down estimate
 - 5% of societal cost of annual outages (at 15% DPV penetration)
- Alternative bottom-up approach:
- In a multi-day grid-outage, all customers should have access to a functional:
 - grocery store, hardware store
 - health clinic, heat shelter
 - device charging locations, etc.
- Component value may vary by (1) location and (2) customer category.
- Compensation tied to heightened standard for interconnection and/or performance during an actual grid outage (per diem)?

Thanks

Erin Stojan Ruccolo Director, Electricity Markets

Allen Gleckner Staff Attorney

ENVIRONMENTAL LAW & POLICY CENTER

Protecting the Midwest's Environment and Natural Heritage

Joe Wiedman Partner, Keyes, Fox & Wideman

Rick Gilliam

Director of Research

and Analysis